
X. Sun, Feb. 2004

Research at the Scalable Computing
Software Laboratory

Xian-He Sun

Zhiling LanZhiling Lan
Department of Computer Science

Illinois Institute of Technology
www.cs.iit.edu/~scs/

Fermi Lab Presentation

X. Sun, Feb. 2004

SCS Computing Infrastructure

Parallel Computers

NU-E
UIC

ANL

NCSA/UIUC

Uof C

NU-C

Star Tap
IIT

OMNI
I-WIRE

Distributed
Optical Testbed

Pervasive Computing
Environments

X. Sun, Feb. 2004

Outline
• High Performance Computing

– Scalable numerical kernel solvers
– Performance optimization

• Distributed Computing
– Mobility and mobility of legacy code
– Performance prediction and task scheduling

• Pervasive Computing (not cover)

• Application
• Conclusion

X. Sun, Feb. 2004

Scalable Numerical Algorithms

• Motivation
– Parallel codes have been developed during last

decade
– The performances of many codes suffer in a

scalable computing environment
• Achievement

– Scalable tridiagonal solvers
– Fast and high-order Poisson solvers
– Iterative Helmholtz equation algorithms
– Domain decomposition methods

X. Sun, Feb. 2004

























.

.

.

.

.

.

=



















I

I
I

























.

.

.

.

.

.

The Reduced System

Generally needs global communication, Decay for diagonal
dominant systems

Sample: The PDD algorithm & its applications

The Parallel Diagonal Dominant (PDD)

X. Sun, Feb. 2004

Scaled Speedup of the PDD Algorithm
on Paragon. 1024 System of order 1600,
periodic & non-periodic

Scaled Speedup of the Reduced PDD
Algorithm on SP2. 1024 System of Order
1600, periodic & non-periodic

sp
ee

du
p

X. Sun, Feb. 2004

The Parallel Two-Level Hybrid Method

• Use an accurate
parallel tridiagonal
solver to solve the m
super-subsystems
concurrently, each
with k processors

• Modify PDD
algorithm and consider
communications only
between the m super-
subsystems.

Combine the PDD with the Pipelining

X. Sun, Feb. 2004

Pipelining

PPD

PDD

PDD, Pipelining, PPD (hybrid)
for NLOM Tridiagonal Systems

X. Sun, Feb. 2004

Pipelining

PPD

PDD

PDD, Pipelining, PPD
for NLOM Poisson Equations

X. Sun, Feb. 2004

High Performance Computing Mobility (HPCM)
• With the rapid advance of communication, the next

generation computing will be: Mobile Computing
• Current successes of mobile computing are based on

safe-languages such as Java, which is slow and
cannot apply to legacy codes

• The HPCM middleware makes codes written in
traditional languages such as Fortran, C, C++
migratable

Distributed Computing

X. Sun, Feb. 2004

Technical Challenges of HPC mobility

• How to transfer Execution State?
• How to transfer Memory State?
• How to transfer Communication State?
• How to transfer process state efficiently?
• How to transfer process state automatically?
• How to support process migrate from one virtual

organization to another in a Grid environment?
• How to support mobility in hybrid Java-native

code environment?
• How to design a coordinated middleware?

X. Sun, Feb. 2004

Mobility of Legacy Code

• We have developed novel methodologies and a
prototype system, HPCM, to migrate codes
written in traditional languages such as Fortran,
C, C++

continue

–Two level mobility: migrate native
codes under Java virtual machine
–General methods: migrate between
different computing systems and
different virtual organizations.
–Leading technology, strong
mobility

X. Sun, Feb. 2004

Performance and Scheduling
• New challenge in Grid Computing

– Resources are shared
– Data are shared resources

• New challenge in high performance computing
– Memory hierarchy and data access delay

X. Sun, Feb. 2004

The Grid Harvest Service (GHS) System

• A long-term application-level performance
prediction and scheduling system for non-
dedicated distributed (Grid) environments

• A new prediction model derived via
probability analysis and simulation

• New scheduling heuristics for resource, QoS,
and data conscious scheduling

• Runtime dynamic scheduling

X. Sun, Feb. 2004

Performance Model

• Remote job has low priority
• Local job arriving and service time based on extensive

monitoring and observation

ws(k) t

kw

kT

ZYXYXYXT SSk +++++++= �2211

Sk YYYwT ++++= �21

1X 1Y SX SY Z

X. Sun, Feb. 2004

Prediction Formula

• Parallel task completion time

• Homogeneous parallel task completion time

• Mean time balancing partition
kkm

k
kk

k
Ww τρ

τρ
)1(

)1(
1

−
−

=
∑

=





 >−≤−+

=≤ ∏
=

−−

,0

,)]0|)(Pr()1([
)Pr(1

m

k
kkk

ww SwtSUee
tT

kkkk λλ
max. wtif ≥

otherwise

wtwhere
otherwise

ifSSUee
tT

mww

−=





 >>≤−+

=≤
−−

τ

ττλλ

,
,0

0,)]0|)(Pr()1([
)Pr(

X. Sun, Feb. 2004

List a set of lightly loaded machines ;
List all possible sets of machines, such as

For each machine set ,
Use mean time balancing partition to partition the task
Use the formula to calculate the mean and coefficient of variation
If > , then ;

End For
Assign parallel task to the machine set ;

},{ ,21 qmmmM h=

pSi =||

)).(1)((
pp SS TCoeTE

′′
+)).(1)((

kk SS TCoeTE + kp =′

pS ′

kS)1(zk ≤≤

Scheduling Algorithms

Scheduling with a Given Number of Sub-tasks

X. Sun, Feb. 2004

List a set of lightly loaded machines ;
While do
Scheduling with Sub-tasks

If > , then
;

End If
End while
Assign parallel task to the machine set .

},{ ,21 qmmmM h=

Optimal Scheduling Algorithm

p
qp <

)).(1)((p
k

p
k SS

TCoeTE +)).(1)((p
k

p
k SS

TCoeTE ′
′

′
′

+

pp =′

p
kS ′
′

X. Sun, Feb. 2004

• List a set of lightly loaded machines ;
• Sort the machines in a decreasing order with ;
• Use the task ratio to find the upper limit q ;
• Use bi-section search to find the p such as

is minimum

},{ ,21 qmmmM �=

Heuristic Scheduling Algorithm

)).(1)((p
k

p
k SS

TCoeTE +

kk τρ)1(−

X. Sun, Feb. 2004

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts mj (in a fixed arbitrary order)

CTij = ETij + dj
do until all tasks with high QoS request in Mv are mapped

for each task with high QoS in Mv, find a host in the QoS qualified host
set- that obtains the earliest completion time
find the task tk with the minimum earliest completion time
assign task tk to the host ml that gives it the earliest completion time
delete task tk from Mv
update dl
update CTil for all i

end do
do until all tasks with low QoS request in Mv are mapped

for each task in Mv find the earliest completion time and the
corresponding host
find the task tk with the minimum earliest completion time
assign task tk to the host ml that gives it the earliest completion
time
delete task tk from Mv
update dl
update CTil for all i

end do

QoS Guided Min-Min Heuristics

X. Sun, Feb. 2004

For a group of tasks Ti
Get MCT0 based on data replica placement.

For each task in the metatask but not run yet
If subtask tij needs data dn

For all Sm in Sites
Compute MCTm based on DDT from host 1 to m.
Get minimum MCTmin

Endfor
If MCTmin < MCT0

Copy dataj from host 1 to host r
MCT0 = MCTmin

Else
Do not copy

Endfor

Data-Conscious Scheduling Heuristics

X. Sun, Feb. 2004

Rescheduling Algorithm

Measure the prediction error of
the system utilization, PU(k)

PU(k) > threshold ?
NO

Find the best machine or machine set
for task reallocation

Calculate the expectation of T(reassign)
and T(original): E(R) and E(O)

E(O) - E(R) > 0 ?

Task Reallocation

Running application until next
monitor period

NO

X. Sun, Feb. 2004

GHS Design: System Architecture

Figure. 1. A framework of GHS task scheduling system

Scheduler

Allocator

Query
Resource lists

Task Manager

Application characteristics

Resources, tasks

Map tab

Map tab

Estimation

CPU Sensor

IO Sensor

Network Sensor

Application-
level Predictor

System-level
Predictor

Resource
Information

Service

Task Execution Service

RRReeesssooouuurrrccceeesss

X. Sun, Feb. 2004

Application-level Prediction

Remote task completion time on single machine

|
Pr

|
tMeasuremen

tMeasuremenediction period −

-20
0

20
40
60
80

100
120
140

0.5 1 2 4 8

remote task execution time
(hours)

pr
ed

ic
tio

n
er

ro
r (

%
)

expectation+variation

expectation-variation

expectation

Experimental Testing

X. Sun, Feb. 2004

Prediction of parallel task completion time

Prediction of a multi-processor with local scheduler

-200

-100

0

100

200

300

0.
5 2 8 32 12
8

51
2

parallel task execution time
(hours)

pr
ed

ic
tio

n(
%

)

expectation+variation

expectation

expectation-variation

0

5

10

15

20

4 8 16

parallel task execution
time (hours)

pr
ed

ic
tio

n
er

ro
r(

%
)

expectation+variation
expectation-variation

expectation

X. Sun, Feb. 2004

Comparison with NWS

0

50

100

150

1 2 4 8 16 24
remote t ask demand

(hour s)

p
r
e
d
i
c
t
i
o
n

e
r
r
o
r

(
%
)

NWS (10 seconds)
NWS (5 mi nut es)
GHS

Mean of the prediction error of NWS and GHS

X. Sun, Feb. 2004

Performance Gain with Scheduling

Execution time with different scheduling strategies

0
200
400
600
800

1000
1200
1400
1600
1800

10 15 20

machine number

ex
ec

ut
io

n
tim

e
(s

ec
on

d)
optimal

random (5 machines)

random (10 machines)

random (15 machines)

20 machines

heuristic

X. Sun, Feb. 2004

Data Access Optimization
• Data access is the bottleneck of high

performance computing

1

10

100

1000

10000

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Relative Speeds of CPU verse DRAM

Gap increasing by 50%
per year

(hundreds of wasted
CPU cycles per miss –

soon thousands)

Much worse for I/O
bottleneck
(millions of wasted
CPU cycles per
miss)

CPU speed

DRAM speed

X. Sun, Feb. 2004

Solution Approach

• Memory access pattern significant impact on comm.
• Impact differently on different machines
• The memory LogP model
• Optimization methods
• Application on MPI applications

Non-Contiguous
data

Non-Contiguous
data

Factor of
3!

P 1 P 2

Contiguous
data

send
time

.176 us

stride = 16 bytes

.551 us

Contiguous
data

Memory communication cost can be significant for real
applications.

X. Sun, Feb. 2004

Sender user space

CPU

Memory hierarchy

Network Buffer

Network Buffer

Memory hierarchy

System space
(Interconnect Cloud) 2o + L†L

os

or

Application buffer

The memory logP model
l: the additional latency in transfer non-contiguous data of
data size (s) and distribution (d) for a given implementation
of data transfer on a given system, l=f(s,d)

g

g

† Assume g = o, common simplification of LogP model

o: the data transfer overhead, defined as the length of
time to transfer contiguous data of data size (s) and
distribution (d) for a given implementation of data transfer
on a given system, l=f(s,d)

For ideal case, o remains constant with size.

g: the gap, defined as the minimum time interval between
consecutive message receptions at a processor. The
reciprocal of g corresponds to the available per-
processor bandwidth for a given implementation of data
transfer on a given system.

P: the number of processor/memory modules

Receiver user space

CPU

Application buffer

ls

lr

Total Comm Cost = 2(o+l) + L

X. Sun, Feb. 2004

Bound on hardware performance

o parameter of LogP model

Bound on middleware + hardware performance

o parameter of memory logP model

Bound on application + middleware + hardware performance

l parameter of memory logP model for given d

data size

co
m

m
un

ic
at

io
n

la
te

nc
y

Performance bounds using memory-logP

X. Sun, Feb. 2004

Case Study: Matrix Transpose on a SGI O2000
using MPI middleware for communication

Network

Memory

P P P
C C C

Shared Memory Buffer

Application Buffer

Network Buffer

3b3a

Memory

P P P
C C C

Shared Memory Buffer

1a

1b

2b
2a

Application Buffer

Network Buffer

Comm. critical paths: Non-Cont. data need
go through the application buffer first

X. Sun, Feb. 2004

Quantifying Communication Cost for Matrix
Transpose

0

50

100

150

200

250
32K

128K
512K 2M 8M 32M
128M
512M

d ata s ize (bytes)

cy
cle

s p
er

 re
fer

en
ce

c ont iguous ove rhea d da t a -pa cking ove rhea d

middle wa re -induce d ove rhe a d ne t work-c ommunic a t ion ove rhe ad

X. Sun, Feb. 2004

NO

YES

YES

NO

MPI communication function

Is datatype
predefined?

Retrieve data access pattern

Can performance be
improved?

Select suitable packing
function

Calculate optimization
parameters

Pack data into contiguous
buffer

Template
Packing

functions

Use original MPI
function

Network buffer

Architectural
information
(cache and
TLB info)

X. Sun, Feb. 2004

Improved performance of MPI derived datatypes

Optimized MPICH performance

0

50

100

150

200

250

128K 512K 2M 8M 32M 128M 512M

data size (bytes)

cy
cl

es
 p

er
 re

fe
re

nc
e

original MPICH manual packing optimized MPICH

X. Sun, Feb. 2004

Bandwidth Improvement

Communication bandwidth

0

5

10

15

20

128K 512K 2M 8M 32M 128M 512M

data size (bytes)

ba
nd

w
id

th
 (M

B
/s

)

original MPICH manual packing optimized MPICH

X. Sun, Feb. 2004

• Worked on a cosmology application called ENZO
– SAMR (Structured Adaptive Mesh Refinement)

application in astrophysics and cosmology
– Developed by G. Bryan and M. Norman

• Three major tasks:
– Conducted a detailed performance analysis
– Developed a novel dynamic load balancing (DLB)

scheme for ENZO on parallel systems
– Extended the code to the Computational Grid

The Cosmology Application

X. Sun, Feb. 2004

Task 1: Performance Analysis

• Overall characteristics
– Manual instrumentation with FPMPI tool

• I/O performance
– Use Pablo toolkit

• Adaptive characteristics
– Coarse granularity
– High magnitude of imbalance
– Different patterns of imbalance
– High frequency of refinements

X. Sun, Feb. 2004

Task 2: Parallel DLB

• Design a DLB scheme for SAMR applications
considering their adaptive characteristics

• Moving-grid phase
– Directly move excess grids from overloaded proc. to

underloaded proc.
– Minimize grid movements by global information
– Address the high frequency and different patterns

• Splitting-grid phase
– Split the largest grid on the overloaded proc.
– Address the coarse granularity

X. Sun, Feb. 2004

Total Execution Time

0

9000

18000

27000

36000

45000

8 16 32 48 64

number of processors

tim
e

in
 s

ec
on

ds

AMR64 (original
DLB)
AMR64 (parallel
DLB)
AMR128 (original
DLB)
AMR128 (parallel
DLB)
ShockPool3D
(original DLB)
ShockPool3D
(parallel DLB)

5.28%

15.36%
33.81%

29.16% 34.45%

X. Sun, Feb. 2004

Imbalance Ratio

0

2

4

6

8

10

12

14

8 16 32 48 64
number of processors

im
ba

la
nc

e_
ra

tio

AMR64
(original DLB)
AMR64
(parallel DLB)
AMR128
(original DLB)
AMR128
(parallel DLB)
ShockPool3D
(original DLB)
ShockPool3D
(parallel DLB)

AvgLoad
MaxLoadratioimblanace =_

X. Sun, Feb. 2004

Task 3: Extension to Grid

• Extend the improved version to the Grid
– Alliance’s Grid

• One major issue: a new DLB scheme for
distributed environment
– Heterogeneity of processors
– Heterogeneity of networks
– Dynamic features of networks
– Adaptive features of applications

X. Sun, Feb. 2004

Experiments

• DS1: LAN-connected

• DS2: WAN-connected (two locations)

• DS3: WAN-connected (two countries)

ANL (16 nodes)ANL (16 nodes) ANL (16 nodes)ANL (16 nodes)

SGI Orign2000SGI Orign2000
250 MHz250 MHz

SGI Orign2000SGI Orign2000
250 MHz250 MHz

Gigabit EthernetGigabit Ethernet

NCSA (8 nodes)NCSA (8 nodes) ANL (8 nodes)ANL (8 nodes)

ATMATM OCOC--33

SGI Orign2000SGI Orign2000
250 MHz250 MHz

SGI Orign2000SGI Orign2000
250 MHz250 MHz

NCSA (8 nodes)NCSA (8 nodes)

SGI Orign2000SGI Orign2000
250 MHz250 MHz

SARA (8 nodes)SARA (8 nodes)

SGI Orign3800SGI Orign3800
500 MHz500 MHz

StarTap StarTap

X. Sun, Feb. 2004

0

400

800

1200

1600

2000

tim
e

in
 se

co
nd

s

4+4 8+8 16+16
number of processors

Execution Time for AMR64 on DS1

�������� The relative improvement ranges from 2.6% to 45.9%The relative improvement ranges from 2.6% to 45.9%

0
50

100
150
200
250
300
350
400

tim
e

in
 se

co
nd

s

1+1 2+2 4+4 6+6 8+8

number of processors

Execution Time for ShockPool3D on DS2

parallel
DLB

distributed
DLB

X. Sun, Feb. 2004

0

100

200

300

400

500

tim
e

in
 se

co
nd

s

1+1 2+2 4+4
number of processors

Execution Time for AMR64 on DS3

0

100

200

300

400

500

600

tim
e

in
 se

co
nd

s

1+1 2+2 4+4 6+6 8+8

number of processors

Execution Time for ShockPool3D on DS3

parallel
DLB

distributed
DLB

�������� The relative improvement ranges from 10.0% to 56.1%The relative improvement ranges from 10.0% to 56.1%

X. Sun, Feb. 2004

Conclusion

• Memory Model and Algorithms: Improve
high performance computing

• Mobility plus Dynamic Scheduling: improve
performance, reliability, availability, QoS,
and trustiness of distributed computing

• Application-level Performance Optimization
• Fermi Applications: Performance analysis

and enhancement, implementation on Grid,
such as the TeraGrid

